
Application Report
SPRA628A - March 2002

1

TMS320VC5421 Bootloader Technical Reference
Tai Nguyen, Bill Winderweedle C5000 Applications Team

ABSTRACT

A bootloader is provided on the TMS320VC5421 for loading user code to on-chip memory
at reset. The bootloader code is contained within the 2K ROM in each of the two DSP
subsystems in ’5421. Support is provided in ROM code for three different modes of boot load
operation: parallel 8-bit, parallel 16-bit, and serial EEPROM. In addition, HPI boot mode is
supported with the ROM disabled.

Unless otherwise noted, the information contained in this document should be considered
ADVANCE INFORMATION on new products in the sampling or pre-production phase of develop-
ment. Information and specifications in this document are subject to change without notice.

Important Notice Regarding Bootloader Program Contents:

Texas Instruments may periodically update the bootloader code supplied in the ROM to
correct known problems, provide additional features, or improve functionality. These
changes may be made without notice, as needed. Although changes to the ROM code will
preserve functional compatibility with prior versions, the locations of functions within the code
may change. Users should avoid calling functions directly from the bootloader code
contained in the ROM, since the code may change in the future.

Contents

1 Introduction 2.

2 TMS320VC5421 Considerations 3.

3 Boot Modes 4.
3.1 Parallel Boot Mode 5.
3.2 Parallel Boot Selection 5.
3.3 Boot Table for Parallel Boot Mode 6.

4 Serial EEPROM Boot Mode 6.
4.1 Serial EEPROM Boot Mode Selection 9.
4.2 Boot Table for Serial EEPROM Boot Mode 9.

5 Boot Table 10.

Appendix A Memory Maps 11.

List of Figures

Figure 1. Bootloader Mode Selection Flowchart 4.
Figure 2. Parallel Boot Mode Selection Flowchart 5.
Figure 3. Hex Conversion Example Command File for Parallel EPROM Boot Mode 6.
Figure 4. McBSP to EEPROM Interface for Serial EEPROM Boot Mode 7.
Figure 5. SPI Bootload Flowchart 8.
Figure 6. Example Read Access for Serial EEPROM Boot Mode 9.

SPRA628A

2 TMS320VC5421 Bootloader Technical Reference

Figure 7. Hex Conversion Command File Example for Serial EEPROM Boot Mode 9.
Figure 8. Program Data Stream for Parallel Boot in 16-Bit Word Mode 10.
Figure A–1. CPU Memory Map 11.
Figure A–2. DMA On-Chip Program Memory Map 12.
Figure A–3. DMA External Data Memory Map (SLAXS=1, DLAXS=1) 13.

List of Tables

Table 1. TMS320VC5421 Pin Configuration for Various Boot Modes 4.

1 Introduction

An important aspect of microprocessor based systems is the bootload process, in which the
system is initialized and normal operations begin. A typical ’5421 based system includes a
primary host processor, and the ’5421 functioning as a secondary slave processor. At system
reset, the host processor is usually used to initialize the ’5421. These systems require an
initialization process for the ’5421 to accept information from the host processor whenever the
system is reset.

Other systems consist of some nonvolatile memory (i.e., EPROM), as well as some volatile
memory (i.e., RAM). The nonvolatile memory is usually too slow to execute real time code from.
Therefore, it is only used to initialize the faster RAM. For this type of system, it is desirable to
have an initialization, or bootload, process that automatically copies the system program from
the nonvolatile memory to the fast RAM when the system is reset.

The ’5421 bootloader is a program contained in the on-chip ROM that can be used to initialize
the system memory after reset. Several options or boot modes are available to support various
methods of initialization. The following boot modes are included in the ’5421 bootloader:

• Parallel-16 Boot Mode: loads code via 16-bit wide asynchronous memory device using the
external memory interface.

• Parallel-8 Boot Mode: loads code via 8-bit wide asynchronous memory device using the
external memory interface.

• Serial EEPROM Boot Mode: loads code via an external master device such as 8-bit wide
serial EEPROMs using McBSP 2.

Unlike many other ’54x devices, the ROM bootloader on the ’5421 does not provide the HPI,
parallel I/O, and standard serial port boot modes. HPI boot can be accomplished by placing the
device in reset, loading the code into internal RAM, and then releasing the device from reset
with the ROM disabled (XIO=0). This is similar to the RAM loading process used on the ’5420,
except that there is no ROM on the ’5420. For details on reset sequencing, refer to Bootloader
Operating Modes, in the TMS320VC5421 datasheet (SPRS098).

The bootloader allows multiple memory sections to be loaded into different destination
addresses within the system RAM. These sections can be either program or data. However, the
bootloader cannot directly boot into data space. If sections must be placed in data memory
space, these sections can initially be stored in program space, and then copied over by the main
program at run time. Another way of initializing sections in data space is using the on-chip
DARAM that can be mapped into both program space and data space. Otherwise, sections to be
stored in data memory must follow the sections to be stored in program memory and these
sections will be booted last.

SPRA628A

3 TMS320VC5421 Bootloader Technical Reference

After reset, if the on-chip ROM is enabled (XIO = 1 and GPIO0/ROMEN = 1), the ’5421
automatically begins execution of the bootloader. After the initialization is performed, the
bootloader loads the system RAM according to the boot mode selected and then causes the
’5421 to begin execution of the loaded code. At this point, the bootload process is complete, and
the ’5421 performs the intended system function. Whenever the system is reset again with the
boot ROM enabled, the ’5421 starts execution of the bootloader again, and the entire bootload
process is repeated.

2 TMS320VC5421 Considerations

On the ’5421, the following items should be considered by the user and bootloader designer:

• The memory maps of the CPU and the DMA show the shared memory at different addresses
(CPU and DMA memory maps are shown in Appendix A). The user must use the DMA
memory map address for the load address appropriately and ensure the download sections
must not exceed 32K words (i.e., the load address) for both data and program. Each section
must be within the DMA memory addresses.

• The shared memory with respect to the DMA is part of two extended program pages (see
attached DMA memory map). Since the DMA address registers are only 16 bits wide, the
extended address register of the DMA also has to be programmed correctly.

• For parallel-8 and parallel-16 boot modes, external PROM devices should be mapped into
external data memory with respect to the DMA memory map, to achieve the PROM
maximum address range (i.e. 256K). For specific addresses, refer to the DMA External Data
Memory Map in Appendix A. The data memory with respect to the CPU memory map is
limited to 64K.

• The entry point of the application program must not utilize a program memory address within
the range of 00_E000h to 00_FFFFh. This is to avoid possible conflicts with an enabled local
ROM in this address range.

• DSP subsystem B/A must not attempt to use the external memory interface (EMIF) while the
other DSP subsystem (A/B) is boot loading the application program. Each DSP subsystem
may meet this requirement by remaining in reset or by executing only from on-chip memory
(e.g., its own ROM or local DARAM). HPIRS places DSP subsystem A in control of the
EMIF pins. For access to the EMIF after reset, DSP subsystem B must set the general
purpose I/O control register bits (CORE SEL, XIO GRANT, XIO REQ). See the ’5421
datasheet, for more details on the EMIF arbitration between CPU XIO and DMA.

• Either core must not fetch any instructions from memory location 00 E000h to 00 FFFFh
while the system is modifying the XIO pin.

SPRA628A

4 TMS320VC5421 Bootloader Technical Reference

3 Boot Modes

Bootloader mode selection is determined by the state of the GPIO1 pin and the first word read
by the bootloader. If GPIO1 = 1, the bootloader will execute the SPI EEPROM boot mode. If
GPIO1 = 0, the bootloader will determine which parallel boot mode to be executed. The table
below describes the configuration of ’5421 pins for ROM enable/disable and boot modes.

Table 1. TMS320VC5421 Pin Configuration for Various Boot Modes

XIO GPIO0/ROMEN GPIO1 Description

0 x x ROM is disabled and 8K words of on-chip DARAM are mapped in. The CPU will fetch
from internal RAM when released from reset. This configuration can be used for HPI
boot.

1 0 x ROM is disabled and 8K words of on-chip DARAM are mapped in. The CPU will fetch
from external memory devices when released from reset. This configuration can be
used when a custom bootloader resides in external memory devices.

1 1 0 ROM is enabled and 8K words of on-chip DARAM are mapped out. Parallel boot
mode is selected.

1 1 1 ROM is enabled and the 8K words of on-chip DARAM are mapped out. Serial
EEPROM boot mode is selected.

The following flowchart shows the selection of modes for bootloader operation. In addition, the
details of the boot sequence for each boot mode will be discussed in the following sections.

Reset

Yes

No

GPIO1=1 ?

Begin

SPI boot

Valid parallel boot?

Parallel boot

Read BSW from external data space 0000h
in DMA memory map

Error
No

Yes

Figure 1. Bootloader Mode Selection Flowchart

SPRA628A

5 TMS320VC5421 Bootloader Technical Reference

3.1 Parallel Boot Mode

The parallel boot mode is intended for boot loading from a parallel EPROM or EEPROM device.
This boot mode uses the external memory interface of the ’5421 to transfer code from 8-bit or
16-bit external data memory in DMA memory map to program space. The parallel boot mode is
selected by providing a particular word at a certain external memory address.

3.2 Parallel Boot Selection

The parallel boot is selected via the GPIO1 pin. Proper selection of the boot mode requires a low
state on the GPIO1 pin for a minimum of 50 CPU cycles after the ’5421 is reset. The bootloader
will check the data memory location 0000h for the Boot Selection Word (BSW). The first word
from this address will determine whether it is a valid code to boot and the data length. The first
word at this address should be 10AAh for 16-bit parallel boot. For 8-bir parallel boot mode, the
first two bytes will be 08h and Ah. The eight most significant bits indicate the memory width
where the source program resides (8/16 bits wide). The eight least significant bits are the
Bootloader Recognition Byte (BRB), which is 0AAh. If the first word is not 08AAh or 10AAh, then
the bootloader will stay in an endless loop at the end of the bootloader program.

Yes

W = 10AAh

DMA transfers n words to
re-initialize the registers. If
in 8-bit mode, each word
needs to be DMA trans-
ferred from source and form
a 16-bit word.

Read first word (W)

16-bit boot mode

Load Section Size (N)

N = 0

Transfer N words of data
from source to destination

No
W = xx08h

Yes

Yes

No

Read second word (W)

Yes

W = xxAAh

8-bit boot mode

No Error - branch to
infinite loop

Load XPC of entry point

Load entry point

Branch to the entry point

Execute program at start

No

Figure 2. Parallel Boot Mode Selection Flowchart

SPRA628A

6 TMS320VC5421 Bootloader Technical Reference

The flowchart above shows that if the first word read from the address 0000h of the external
data memory matches the BSW properly, the bootloader will execute an external parallel boot.
Otherwise, the bootloader will branch to the end of the bootloader and go into an endless loop.

Then, the DMA will be used to load code into the ’5421’s shared memory. The DMA will load one
section at a time. Individual sections cannot be larger than 32K words and cannot span entire
32K-word blocks of physical memory. At the conclusion of each block, the DMA will be
reconfigured to load code into the next block. This process is repeated until there are no
sections left to transfer.

In 16-bit boot mode, the DMA directly loads code residing within external DMA data memory
space into on-chip CPU memory space (within the internal DMA memory map). In 8-bit mode,
the DMA temporarily loads code residing within external DMA data memory space into on-chip
CPU data memory space (SARAM at 00_8000h to 00_FFFFh). The code is then packed and
transferred to on-chip CPU memory space (within the internal DMA memory map).

3.3 Boot Table for Parallel Boot Mode

The boot table used for programming the parallel EEPROM is generated using the 8/16-bit
parallel option of the Hex Conversion Utility (HEX500.EXE). An example command file for the
Hex Conversion Utility for 8-bit parallel is shown below.

myfile.out /* Input COFF file name.
–e 0x0000 /* Entry point symbol.
–a /* ASCII hex output format.
–boot /* Bootload all sections in the input file.
–bootorg PARALLEL /* Create a parallel port boot table.
–memwidth 8 /* EPROM width is 8bits.
–o myfile.hex /* Output file name.

Figure 3. Hex Conversion Example Command File for Parallel EPROM Boot Mode

When the Hex Conversion Utility is invoked with the example command file above, it creates an
ASCII hex file called myfile.hex, which can be used for programming a parallel EPROM. All of
the sections from the input file are placed into the boot table and the entry point is set to the
physical address 0x0000.

4 Serial EEPROM Boot Mode

The serial EEPROM boot mode is intended for a bootload of the ’5421 from an SPI based serial
EEPROM. This mode configures McBSP2 in the clock-stop mode, with internal clocks and
frames. After configuration, the McBSP sequentially accesses the serial EEPROM. The
EEPROM must have a four-wire SPI slave type interface. The interface between the McBSP and
EEPROM is shown in Figure 4.

SPRA628A

7 TMS320VC5421 Bootloader Technical Reference

’54xx EEPROM

BCLKX

BFSX

BDX

BDR

SCK

/CS

SI

SO

Figure 4. McBSP to EEPROM Interface for Serial EEPROM Boot Mode

SPRA628A

8 TMS320VC5421 Bootloader Technical Reference

Initialize McBSP2 for SPI
mode

Get first address

Get second
addressNo

Yes

Yes

No

Get program Entry point
(XPC and PC)

Is length zero?

No

Yes

Is it a
boot table?

(0x08)

Get length, destination,
and extended destination

of section of code

Branch to program
entry point

Is it a
boot table?

(0xAA)

Load section of code

Figure 5. SPI Bootload Flowchart

For each access, the McBSP transmits a 32-bit packet consisting of the 8-bit read instruction
(03h), followed by the 16-bit read address, and a “place-holder” byte. The EEPROM ignores the
last 8 bits in the packet, and uses this slot to shift out the addressed byte on the SO output pin.
An example read access is shown below.

SPRA628A

9 TMS320VC5421 Bootloader Technical Reference

0 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 28 29 30 31

D D D D D D 1 1 A15 A14 A13 A2 A1 A0

D7 D6 D5 D4 D3 D2 D1 D0

Instruction Address

Data

CLKX1/SCK

BFSX1/SS

BDX1/S1

SD/BDR1

Figure 6. Example Read Access for Serial EEPROM Boot Mode

The McBSP clock rate is set to fCLKOUT/250, or 400Khz for a 100Mhz device. This low bit rate
ensures compatibility with most EEPROM devices. The McBSP is configured with CLKSTP = 2,
CLKXP = 0, and CLKXM = 1, for use as an SPI master. The relevant interface timings for this
mode are given in the McBSP section of the ’5421 datasheet. In addition, more specific McBSP
details are provided in the TMS320C54X DSP Enhanced Peripherals Reference Set Volume 5
(SPRU302).

4.1 Serial EEPROM Boot Mode Selection

The serial EEPROM mode is selected via the GPIO1 pin. Proper selection of the boot mode
requires a high state on the GPIO1 pin for at least 50 CPU cycles after the ’5421 is reset.

Similar to the parallel boot modes, the DMA is used to boot load code into the ’5421’s shared
memory. The DMA will boot load one section at a time. Individual sections cannot be larger than
32K words and cannot span entire 32K-word sections of physical memory located within the
DMA memory map. At the conclusion of each block, the DMA will be reconfigured to load code
into the next block. This process will be repeated for all sections.

After the serial EEPROM boot process completes, the XF signal, which is high immediately after
reset, is toggled low. If the EEPROM has an active low HOLD input, this event can be used to
automatically disable the EEPROM after the bootload is completed.

4.2 Boot Table for Serial EEPROM Boot Mode

The boot table used for programming the serial EEPROM is generated using the 8-bit serial
option of the Hex Conversion Utility (HEX500.EXE). An example command file for the Hex
Conversion Utility is shown below.

myfile.out /* Input COFF file name.
–e 0x0000 /* Entry point address.
–a /* ASCII hex output format.
–boot /* Bootload all sections in the input file.
–bootorg SERIAL /* Create a serial port boot table.
–memwidth 8 /* EEPROM width is 8 bits.
–o myfile.hex /* Output file name.

Figure 7. Hex Conversion Command File Example for Serial EEPROM Boot Mode

When the Hex Conversion Utility is invoked with the example command file above, it creates an
ASCII hex file called myfile.hex, which can be used for programming a serial EEPROM. All of
the sections from the input file are placed into the boot table, and the entry point is set to the
physical address 0x0000.

SPRA628A

10 TMS320VC5421 Bootloader Technical Reference

5 Boot Table

The code to be loaded by the bootloader must be arranged in a particular format. This
arrangement is known as the boot table, and in addition to the sections being loaded, it contains
information about the destinations and lengths of the sections. The TMS320C54x COFF to Hex
Conversion Utility (Version 1.2 or higher) is used to create the boot table in the correct format. The
–v548 assembler command line option should be used when assembling the application code.
Note that version 1.2 or higher of the ’C54x code generation tools must be used to generate the
proper boot table for the ’5421. Earlier versions of these tools do not support the enhanced
bootloader options of the ’548/549/5410/5402/5409/5421. Tool versions prior to 1.2 will produce a
boot table format intended for earlier ’C54x devices without generating warnings or errors. Refer
to the TMS320C54x Assembly Language Tools Users Guide (SPRU102) for more information on
the COFF to hex conversion utility. The table below shows the source program data stream for
parallel boot in 16-bit word mode.

O8AAh or 10AAh

Initialize value of SWWSR16
Initialize value of BSCR16

Entry point(XPC)7
Entry point16

Size of 1st section16
Destination of 1st section(XPC)7

Destination of 1st section16
Code word(1)16

.

.

Code word(N)16
Size of Mth section16

Destination of Mth section(XPC)7
Destination of Mth section16

Code word(1)16
.

Code word(N)16
0000h

Figure 8. Program Data Stream for Parallel Boot in 16-Bit Word Mode

SPRA628A

11 TMS320VC5421 Bootloader Technical Reference

Appendix A Memory Maps
Data

Page 0
Program
Page 0

Program
Page 1

Program
Page 2

Program
Page 3

00 0000h
Memory

 00 0000h 01 0000h 02 0000h 03 0000h
Memory
Mapped

R i t
00 005Fh

Registers

O Chi O Chi O Chi O Chi00 0060h On-Chip
DARAM A/B

On-Chip
DARAM A/B

On-Chip
DARAM A/B

On-Chip
DARAM A/BDARAM A/B

(32K Words)
P /D t

DARAM A/B
(32K Words)
P /D t

DARAM A/B
(32K Words)
P /D t

DARAM A/B
(32K Words)
P /D t

On-Chip

Prog/Data
(OVLY=1)

Prog/Data
(OVLY=1)

Prog/Data
(OVLY=1)

Prog/Data
(OVLY=1)On-Chip

DARAM A/B

(OVLY=1)

E l

(OVLY=1)

E l

(OVLY=1)

E l

(OVLY=1)

E l
DARAM A/B
(32K Words)
Prog/Data

External
(OVLY=0)

External
(OVLY=0)

External
(OVLY=0)

External
(OVLY=0)Prog/Data (OVLY=0) (OVLY=0) (OVLY=0) (OVLY=0)

00 7FFFh 00 7FFFh 01 7FFFh 02 7FFFh 03 7FFFh

00 8000h 00 8000h 01 8000h 02 8000h 03 8000h

O ChiOn-Chip
Shared

On-Chip
SARAM

Shared
DARAM 0

()
On-Chip On-Chip On-ChipSARAM

(32K Words)
(24K Words)
Prog Only

On Chi
Shared

DARAM 1

On Chi
Shared

DARAM 2

On Chi
Shared

DARAM 3
(32K Words)

Data Only
(DROM=1)

Prog. Only DARAM 1
(32K Words)

DARAM 2
(32K Words)

DARAM 3
(32K Words)(DROM=1) Shared 0

(32K Words)
Prog. Only

(32K Words)
Prog. Only

(32K Words)
Prog. Only

External
(DROM=0)

00 DFFFh Shared 1 Shared 2 Shared 3(DROM 0)
00 E000h

Reserved
00 F7FFh

Reserved

00 F800h ROM

00 FFFFh 00 FFFFh

(ROMEN = 1) 01 FFFFh

02 FFFFh

03 FFFFh

Figure A–1. CPU Memory Map

SPRA628A

12 TMS320VC5421 Bootloader Technical Reference

Page 0 Page 1 Page 2 Page 3

 00 0000h

Reserved
 01 0000h 02 0000h

Reserved
 03 0000h

00 0020h
Reserved Reserved

00 0021h McBSP
DSR/DRR

McBSP
DSR/DRR

00 005Fh

DSR/DRR
MMRegs Only On-Chip

DSR/DRR
MMRegs Only On-Chip

00 0060h

On Chi
Shared DARAM

(32K Words)

On Chi
Shared DARAM

(32K Words)(32K Words)
Prog. Only

(32K Words)
Prog. Only

On-Chip
DARAM

Prog. Only

Shared 0
On-Chip
DARAM

Prog. Only

Shared 2DARAM
(32K Words)

Shared 0 DARAM
(32K Words)

Shared 2

(32K Words)
Prog/Data

(32K Words)
Prog/Datag g

 00 7FFFh 01 7FFFh 02 7FFFh 03 7FFFh

 00 8000h 01 8000h 02 8000h 03 8000h

O Chi O ChiOn-Chip
SARAM On-Chip

On-Chip
SARAM On-ChipSARAM

(32K Words)
D t O l

On-Chi
Shared DARAM

(32K W d)

SARAM
(32K Words)

D t O l

On-Chi
Shared DARAM

(32K W d)Data Only
(DROM=1)

(32K Words)
Prog. Only

Data Only
(DROM=1)

(32K Words)
Prog. Only(DROM=1)

E l

Prog. Only

Sh d

(DROM=1)

E l

Prog. Only

Sh dExternal
(DROM=0)

Shared 1

External

(DROM=0)

Shared 3
(DROM=0) (DROM=0)

00 FFFFh 01 FFFFh 02 FFFFh 03 FFFFh

Figure A–2. DMA On-Chip Program Memory Map

SPRA628A

13 TMS320VC5421 Bootloader Technical Reference

Page 0 Page 1 Page 2 Page 3

 00 0000h 01 0000h 02 0000h 03 0000h

 00 7FFFh 01 7FFFh 02 7FFFh 03 7FFFh

 00 8000h 01 8000h 02 8000h 03 8000h

Figure A–3. DMA External Data Memory Map (SLAXS=1, DLAXS=1)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third–party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2002, Texas Instruments Incorporated

