FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; $>200 \mathrm{~V}$ using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- 0.635 mm pitch SSOP, 0.50 mm pitch TSSOP, and 0.40 mm pitch TVSOP packages
- Extended commercial range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$, Normal Range
- $\quad \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V , Extended Range
- $\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$
- CMOS power levels ($0.4 \mu \mathrm{~W}$ typ. static)
- Rail-to-Rail output swing for increased noise margin Drive Features for ALVCH162260:
- High Output Drivers: $\pm 24 \mathrm{~mA}$ (A port)
- Balanced Output Drivers: $\pm 12 \mathrm{~mA}$ (B port)

APPLICATIONS:

- 3.3V High Speed Systems
- 3.3V and lower voltage computing systems

DESCRIPTION:

This multiplexed D-type latch is built using advanced dual metal CMOS technology. The ALVCH162260 is used in applications in which two
separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing address and data information in microprocessor or businterface applications. This device also is useful in memory-interleaving applications.

Three 12 -bit $/ / O$ ports (A1-A12, 1B1-1B12, and 2B1-2B12) are available for address and/or data transfer. The output-enable ($\overline{\mathrm{OE} 1 \mathrm{~B}}$, $\overline{\mathrm{OE} 2 \mathrm{~B}}$, and $\overline{\mathrm{OEA}}$) inputs control the bus transceiver functions. The $\overline{\mathrm{OE} 1 \mathrm{~B}}$ and $\overline{\mathrm{OE} 2 \mathrm{~B}}$ control signals also allow bank control in the A -to-B direction. Address and/or data information can be stored using the internal storage latches. The latch-enable (LE1B, LE2B, LEA1B, and LEA2B) inputs are used to control data storage. When the latch-enable input is high, the latch is transparent. When the latch-enable input goes low, the data present at the inputs is latched and remains latched until the latchenable input is returned high.

The ALVCH162260 has series resistors in the device output structure of the "B" port which will significantly reduce line noise when used with light loads. This driver has been designed to drive $\pm 12 \mathrm{~mA}$ at the designated threshold levels. The "A" port has a $\pm 24 \mathrm{~mA}$ driver.

The ALVCH162260 has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING (1)

Symbol	Description	Max.	Unit
Vterm ${ }^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Vterm ${ }^{(3)}$	Terminal Voltage with Respect to GND	$\begin{gathered} -0.5 \text { to } \\ \operatorname{Vcc}+0.5 \end{gathered}$	V
TstG	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
Iout	DC Output Current	-50 to + 50	mA
lik	Continuous Clamp Current, $V_{1}<0 \text { or } V_{I}>V_{c c}$	± 50	mA
Iok	Continuous Clamp Current, Vo < 0	-50	mA
$\begin{array}{\|l\|} \hline \text { ICC } \\ \text { ISS } \end{array}$	Continuous Current through each Vcc or GND	± 100	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter(1)	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	5	7	pF
Cout	Output Capacitance	Vout $=0 \mathrm{~V}$	7	9	pF
CIIO	I/O Port Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	7	9	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLES(1)
В TO A $\overline{(0 E 1 B}=\overline{\text { OE2B }}=\mathrm{H})$

Inputs						Output
${ }_{1} B \mathbf{B x}$	$2 B x$	SEL	LE1B	LE2B	$\overline{\text { OEA }}$	Ax
H	X	H	H	X	L	H
L	X	H	H	X	L	L
X	X	H	L	X	L	$A_{0}{ }^{(2)}$
X	H	L	X	H	L	H
X	L	L	X	H	L	L
X	X	L	X	L	L	$A_{0}{ }^{(2)}$
X	X	X	X	X	H	Z

FUNCTION TABLES (cont'd)

A TO B (OEA $=\mathrm{H})$

Inputs						Outputs	
$\mathbf{A x}$	LEA1B	LEA2B	$\overline{\text { OE1B }}$	$\overline{\text { OE2B }}$	${ }_{1 B x}$	2 Bx	
H	H	H	L	L	H	H	
L	H	H	L	L	L	L	
H	H	L	L	L	H	$2 \mathrm{~B}_{0}{ }^{(2)}$	
L	H	L	L	L	L	$2 \mathrm{~B}_{0}{ }^{(2)}$	
H	L	H	L	L	${ }_{1 \mathrm{~B}_{0}{ }^{(2)}}$	H	
L	L	H	L	L	${ }_{10} \mathrm{~B}_{0}{ }^{(2)}$	L	
X	L	L	L	L	$1_{0}{ }_{0}{ }^{(2)}$	$2 \mathrm{~B}_{0}{ }^{(2)}$	
X	X	X	H	H	Z	Z	
X	X	X	L	H	Active	Z	
X	X	X	H	L	Z	Active	
X	X	X	L	L	Active	Active	

NOTES:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-Impedance
2. $A_{0}, x B_{0}=$ Level of A or $x B$ before the indicated steady-state input conditions were established.

PIN DESCRIPTION

Pin Names	I/O	
Ax	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus. ${ }^{(1)}$
1 Bx	I/O	Bidirectional Data Port 1B. Connected to the even path or even bank of memory. ${ }^{(1)}$
2 Bx	I/O	Bidirectional Data Port 2B. Connected to the odd path or odd bank of memory. ${ }^{(1)}$
LEA1B	I	Latch Enable Input for A-1B Latch. The Latch is open when LEA1B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA1B.
LEA2B	I	Latch Enable Input for A-2B Latch. The Latch is open when LEA2B is HIGH. Data from the A-port is latched on the HIGH to LOW transition of LEA2B.
LE1B	I	Latch Enable Input for 1B-A Latch. The Latch is open when LE1B is HIGH. Data from the 1B port is latched on the HIGH to LOW transition of LE1B.
LE2B	I	Latch Enable Input for 2B-A Latch. The Latch is open when LE2B is HIGH. Data from the 2B port is latched on the HIGH to LOW transition of LE2B.
SEL	I	1B or 2B Path Selection. When HIGH, SEL enables data transfer from 1B Port to A Port. When LOW, SEL enables data transfer from 2B Port to A Port.
$\overline{\text { OEA }}$	I	Output Enable for A Port (Active LOW).
$\overline{\mathrm{OE1B}}$	I	Output Enable for 1B Port (Active LOW).
$\overline{\mathrm{OE} 2 \mathrm{~B}}$	I	Output Enable for 2B Port (Active LOW).

NOTE:

1. These pins have "Bus-Hold." All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Condition: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage Level	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V		1.7	-	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V		2	-	-	
VIL	Input LOW Voltage Level	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V		-	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6V		-	-	0.8	
IH	Input HIGH Current	$\mathrm{VCC}=3.6 \mathrm{~V}$	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 5	$\mu \mathrm{A}$
ILL	Input LOW Current	$\mathrm{VcC}=3.6 \mathrm{~V}$	VI $=$ GND	-	-	± 5	
IOZH	High Impedance Output Current	$\mathrm{VcC}=3.6 \mathrm{~V}$	$\mathrm{Vo}=\mathrm{Vcc}$	-	-	± 10	$\mu \mathrm{A}$
Iozl	(3-State Output pins)		Vo = GND	-	-	± 10	$\mu \mathrm{A}$
VIK	Clamp Diode Voltage	$\mathrm{VCC}=2.3 \mathrm{~V}$		-	-0.7	-1.2	V
VH	Input Hysteresis	$\mathrm{VCC}=3.3 \mathrm{~V}$		-	100	-	mV
ICCL ICCH IcCz	Quiescent Power Supply Current	$\begin{aligned} & \mathrm{VCC}=3.6 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$		-	0.1	40	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current Variation	One input a other inputs		-	-	750	$\mu \mathrm{A}$

NOTE:

1. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ${ }^{(1)}$	Test Conditions		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IBHH	Bus-Hold Input Sustain Current	$\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{V}_{1}=2.0 \mathrm{~V}$	-75	-	-	$\mu \mathrm{A}$
IbHL			$\mathrm{VI}=0.8 \mathrm{~V}$	75	-	-	
IBHH IBHL	Bus-Hold Input Sustain Current	$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{V}_{1}=1.7 \mathrm{~V}$	-45	-	-	$\mu \mathrm{A}$
			$\mathrm{VI}=0.7 \mathrm{~V}$	45	-	-	
Івнно IBHLO	Bus-Hold Input Overdrive Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$	V I $=0$ to 3.6 V	-	-	± 500	$\mu \mathrm{A}$

NOTES:

1. Pins with Bus-hold are identified in the pin description.
2. Typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

OUTPUT DRIVE CHARACTERISTICS (A PORT)

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Max.	Unit
VOH	Output HIGH Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 3.6V	$\mathrm{IOH}=-0.1 \mathrm{~mA}$	Vcc-0.2	-	V
		$\mathrm{VcC}=2.3 \mathrm{~V}$	$\mathrm{IOH}=-6 \mathrm{~mA}$	2	-	
		$\mathrm{VcC}=2.3 \mathrm{~V}$	$\mathrm{IOH}=-12 \mathrm{~mA}$	1.7	-	
		$\mathrm{VcC}=2.7 \mathrm{~V}$		2.2	-	
		$\mathrm{Vcc}=3.0 \mathrm{~V}$		2.4	-	
		$\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{IOH}=-24 \mathrm{~mA}$	2	-	
Vol	Output LOW Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 3.6V	$\mathrm{lOL}=0.1 \mathrm{~mA}$	-	0.2	V
		$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{IOL}=6 \mathrm{~mA}$	-	0.4	
			$\mathrm{loL}=12 \mathrm{~mA}$	-	0.7	
		$\mathrm{Vcc}=2.7 \mathrm{~V}$	loL $=12 \mathrm{~mA}$	-	0.4	
		$\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{lOL}=24 \mathrm{~mA}$	-	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

OUTPUT DRIVE CHARACTERISTICS (B PORT)

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Max.	Unit
VOH	Output HIGH Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 3.6V	$\mathrm{IOH}=-0.1 \mathrm{~mA}$	Vcc-0.2	-	V
		$\mathrm{VcC}=2.3 \mathrm{~V}$	$\mathrm{IOH}=-4 \mathrm{~mA}$	1.9	-	
			$\mathrm{IOH}=-6 \mathrm{~mA}$	1.7	-	
		$\mathrm{Vcc}=2.7 \mathrm{~V}$	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.2	-	
			$1 \mathrm{OH}=-8 \mathrm{~mA}$	2	-	
		$\mathrm{Vcc}=3.0 \mathrm{~V}$	$\mathrm{IOH}=-6 \mathrm{~mA}$	2.4	-	
			$\mathrm{IOH}=-12 \mathrm{~mA}$	2	-	
Vol	Output LOW Voltage	$\mathrm{VCC}=2.3 \mathrm{~V}$ to 3.6 V	$\mathrm{IOL}=0.1 \mathrm{~mA}$	-	0.2	V
		$\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{IOL}=4 \mathrm{~mA}$	-	0.4	
			$\mathrm{IOL}=6 \mathrm{~mA}$	-	0.55	
		$\mathrm{VcC}=2.7 \mathrm{~V}$	$\mathrm{lOL}=4 \mathrm{~mA}$	-	0.4	
			$\mathrm{IOL}=8 \mathrm{~mA}$	-	0.6	
		$\mathrm{VcC}=3.0 \mathrm{~V}$	$\mathrm{lOL}=6 \mathrm{~mA}$	-	0.55	
			$\mathrm{ILL}=12 \mathrm{~mA}$	-	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

OPERATING CHARACTERISTICS, $\mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	Unit
			Typical	Typical	
Cpd	Power Dissipation Capacitance per latch Outputs enabled	$\mathrm{CL}=0 \mathrm{pF}, \mathrm{f}=10 \mathrm{Mhz}$	37	41	pF
CPD	Power Dissipation Capacitance per latch Outputs disabled		4	7	pF

SWITCHING CHARACTERISTICS (FOR A AND B PORTS) ${ }^{(1)}$

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=2.7 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
fmax		150	-	150	-	150	-	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Ax to 1 Bx or Ax to ${ }_{2} \mathrm{Bx}$	1	5.9	-	5.8	1.2	4.9	ns
tPLH tPHL	Propagation Delay 1Bx to Ax or 2Bx to Ax	1	5.7	-	5.1	1.2	4.3	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay LExB to Ax	1	5.6	-	5.2	1	4.4	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay LEA1B to 1 Bx or LEA2B to 2 Bx	1	6.1	-	5.9	1	5	ns
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \\ & \hline \end{aligned}$	Propagation Delay SEL to Ax	1	6.9	-	6.6	1.1	5.6	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Output Enable Time OEA to Ax	1	6.7	-	6.4	1	5.4	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	$\frac{\text { Output Enable Time }}{\text { OE1B to 1Bx or } \overline{O E 2 B} \text { to } 2 \mathrm{Bx}}$	1	7.2	-	7.1	1	6	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Output Disable Time OEA to Ax	1	5.7	-	5	1.3	4.6	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	$\begin{aligned} & \text { Output Disable Time } \\ & \frac{\mathrm{OE} 1 \mathrm{~B}}{\mathrm{to}} 1 \mathrm{Bx} \text { or } \overline{\mathrm{OE} 2 \mathrm{~B}} \text { to } 2 \mathrm{Bx} \end{aligned}$	1	6.2	-	5.5	1.3	5.1	ns
tsu	Set-Up Time, data before LE1B, LE2B, LEA1B, or LEA2B	1.4	-	1.1	-	1.1	-	ns
th	Hold Time, data after LE1B, LE2B, LEA1B, or LEA2B	1.6	-	1.9	-	1.5	-	ns
tw	Pulse Duration, LE1B, LE2B, LEA1B, or LEA2B HIGH	3.3	-	3.3	-	3.3	-	ns
tsk(0)	Output Skew ${ }^{(2)}$	-	-	-	-	-	500	ps

NOTES:

1. See test circuits and waveforms. $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS:

TEST CONDITIONS

Symbol	$\mathrm{Vcc}\left({ }^{(1)}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}\right.$	$\mathrm{Vcc}(1)=2.7 \mathrm{~V}$	$\mathrm{Vcc}{ }^{(2)}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$	Unit
VLoad	6	6	$2 \times \mathrm{Vcc}$	V
VIH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc/ 2	V
VLz	300	300	150	mV
VHz	300	300	150	mV
CL	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:
ALVC Link
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz} ; \mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz} ; \mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	
Enable High	GND
All Other tests	Open

OUTPUT SKEW - tsk (x)

tSK $(x)=\mid$ tPLH2 - tPLH1 \mid or \mid tPHL2 - tPHL1 \mid
NOTES:

1. For tsk (0) OUTPUT1 and OUTPUT2 are any two outputs.
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY

ALVC Link

ENABLE AND DISABLE TIMES

NOTE:
ALVC Link

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES

ALVC Link

PULSE WIDTH

ALVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2975 Stender Way
Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116
fax: 408-492-8674
www.idt.com*

